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Relationship between the Deformation Processes Occurring
in Rubbers and Their Molecular Structure
(Structure of Rubbers under Strain)
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ABSTRACT
Based on measurements of rubber hysteresis curves, the relationship
between the network structure of elastomers and their mechanical
behavior is analyzed. On the basis of the classical theory of rubber
elasticity, the Flory corrections, which take into account physical
cross-links in the elastomer network structures in the course of
straining a rubber sample at a constant rate, were calculated. To this
end, the Frenkel-Eyring thermal-fluctuation theory was used, also tak-
ing into account the activation energy of the polymer viscosity,
which depends on the entropic elasticity of macromolecules in the
processes of their flow and deformation. Flory corrections were cal-
culated within the standard linear solid model.
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Introduction and experimental

The ability of elastomers to sustain high reversible deformations is associated with the
entropic nature of the stretching behavior of long macromolecules in a condensed
amorphous state. The statistical rubber elasticity theory, elaborated in its application to
elastomer networks,[1] sets out the dependence between the true stress,ri, sustained by
the elastomer, and the extended length of the specimen, l, in the following form[2]:

ri ¼ nRT ð l
l0
Þ2 � l0

l

� �
¼ nRT k2 � 1

k

� �
(1)

where k is the extension ratio: k ¼ l
l0
¼ l0þDl

l0
¼ 1þ e, l is the current length of the speci-

men, l0 is the initial length in the specimen before the extension, Dl ¼ l � l0 is the dif-
ference between the specimen’s current and initial length values, e ¼ Dl

l0
is the relative

elongation, n ¼ q
Mc

is the number of moles of network chains found in a unit volume
(cm3), q is the elastomer density, Mc is the molecular weight of the chain segments
between cross-links, R is the gas constant and T is the absolute temperature.
The isothermal Young’s modulus,E, for any point of the strain curve, also called the

rubbery modulus, can be expressed as the derivative of the force, ri, with respect to the
strain, k, at a given temperature[2]:
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E ¼ dri
dk

� �
T

(2)

After differentiating Eq. (1), we obtain Eq. (3), which gives the rubbery modulus, E,
for the true stress ri :

E ¼ nRT 2ð l
l0
Þ2 þ l0

l

� �
¼ nRT 2k2 þ 1

k

� �
(3)

The magnitude of the length of the molecular chains Mc between the cross-links of
rubber was taken into account by Flory[3] in Eq. (3) for the modulus of elasticity,E, of
the network[1]:

E ¼ g
qRT
Mc

1� 2Mc

M

� �
(4)

where Mc is the molecular weight of a chain segment extending between inter-chain
cross-links and M is the initial molecular weight of the elastomer before cross-linking,
q is the density of the rubber. The values Mc and M were introduced by Flory to char-
acterize the number of chemical cross-links in the network. To account for other poten-
tial defects of the network that may change the number of cross-links in the network
and affect its deformation behavior, Flory introduced the correction factor g:
Using Flory’s corrections g in Eq. (4) to account for network flaws, we obtain for Eq.

(3) the following expression for the rubbery modulus:

E ¼ g
qRT
Mc

1� 2Mc

M

� �
2k2 þ 1

k

� �
(5)

Flory’s factor g can be calculated based on an analysis of tensile curves by measuring
the isothermal Young’s modulus,E (Eq. (5)) for any point of the strain curve.
Formula (1), however, was found to only be in agreement with the uniaxial extension

curves obtained by experimentation when the extension ratios were small to medium.[1]

In response to this issue, other dependences were developed to provide a more complete
description of the tensile curves for rubber; these contained two, three or more parame-
ters and had an empirical nature (Mooney-Rivlin’s formula, Martin-Roth-Stiehler’s for-
mula, etc.).[4]

The statistical rubber elasticity theory (Eq. (1)) provides a good and multi-faceted
description of elastomer deformation mechanisms. However, the fact that the theoretical
dependence fails to match those shown by experimental tensile curves at high elong-
ation calls for an explanation since it suggests that our understanding of how the struc-
ture of network elastomers relates to the mechanism governing their deformation may
be incomplete. To elucidate such relationships we conducted our study of the mechan-
ical hysteresis of rubber.
Changes in the structure during the stretching of rubbers are vividly manifested in

the Mullins effect.[5] This effect is easily observed in the mechanical hysteresis curves
for rubber. After a rubber specimen is extended for the first time and then allowed to
recover from the deformation, repeated extension by the same amount requires signifi-
cantly lower stress values. The hysteresis curves for a silicone rubber [poly(methylvinyl-
siloxane)] are shown in Fig. 1. We subjected the rubber specimen to tensile deformation
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at 250mm/min until the stress reading reached a specified nominal stress value of
3.8MPa, calculated for the initial cross-section. After this, the specimen was subjected
to reverse deformation until the stress had been completely relaxed. This was then
repeated four times.
A strong shift of the first ascending tensile curve toward larger strain values for the

repeat hysteresis loops indicated a significant softening of the material, which seems
naturally attributable to a change in the elastomer structure. For unfilled rubber (here
an elastic silicone rubber), such a structural change is most likely due to rupture of
cross-links during the first round of deformation. What calls for additional research,
however, are the ways in which we could refine our understanding of what type of
cross-links (chemical or physical) have actually broken, and how the primary and, to a
lesser extent, successive structural elements will change as the specimen is taken
through further rounds of deformation.
Although the Mullins effect has been studied for over six decades, it is still considered

a major challenge in explaining the behavior of rubber-like materials, not just in terms
of understanding the underlying physics of this effect, but in terms of modeling it
mechanically.
The purpose of our research described here was to analyze the hysteresis curves based

on the basic provisions of the statistical theory of rubber elasticity, including some
defects of the structure of elastomeric networks. The main mechanical property role of
the various types of cross-links, providing highly elastic reversible deformation of the
elastomer networks, is played by chemical cross-links. Flory drew attention to the
entanglements of the chains as a flaw of the network.[3] These can have an effect similar
to that of chemical cross-linking, although weaker.

Discussion

It seems only logical that the increase in tensile stress occurring in an elastomer under-
going tensile deformation at a constant rate,_e, should be described in terms of the
Standard Linear Solid (SLS) model. According to this model, an increase in applied

Figure 1. Hysteresis loops obtained for silicone rubber subjected to repeated forced extension, and
compression at 250mm/min at room temperature.
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stress,r, increases the reversible strain governed by the modulus of the rubbery spring,
E (Fig. 2):
For the SLS model, the external stress,r, being applied is equal to the sum of the

stresses on the rubber-like spring with modulus E and the elastic spring with modulus
H: This can be written as r ¼ ren þ re: Here, ren ¼ fen is the stress associated with the
forces of entropic elasticity and reversible deformation, e, generated by the elastomer,
and re is the stress on the elastic spring with modulus H; this stress, re, is equal to the
stress on the dashpot, rg, the viscous element of the SLS model. Provided that, for pur-
poses of the SLS model, ren ¼ Eeen ¼ Ee, the following expression for the stress, rg, on
the dashpot is obtained:

rg ¼ re ¼ r� ren ¼ r� Ee (6)

The differential equation for the SLS model is[6]:

gðH þ EÞ_e þHEe ¼ g _r þ Hr (7)

In Eq. (7), g is the viscosity of the dashpot in the SLS model, H is the Hook�es modu-
lus of an elastic spring connected in series with the dashpot, E is the elastic modulus of
the reversible (rubber-like) spring, e is the relative strain, _e is the strain rate of deform-
ation during stretching of the sample, and _r is the rate of change of stress when
stretching rubber at a constant rate.

Figure 2. Standard Linear Solid (SLS) mechanical model.
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For constant-viscosity g situations the SLS model predicts that, as the solid is
extended at a constant rate, the strain-dependent stress growth will gradually slow
down and evolve into a linear stress-strain dependence[6] (Fig. 3).
To express the stress-strain relation for rubber at constant tensile strain rate, _e, we

rewrite Eq. (7) as follows:

gðH þ EÞ_e � g _r ¼ Hr� HEe (8)

From this it can be written:

r ¼ g ðH þ EÞ_e � _r½ � þ HEe
H

¼ g
ðH þ EÞ_e � _r

H
þ Ee (9)

For the SLS model at a constant rate of deformation growth _e ¼ const and the dash-
pot viscosity g ¼ Ae E0

kBT
¼ const (Arrhenius-Andrade equation) is independent of the

applied load r: Here E0 is the activation energy of the flow in the Arrhenius-Andrade
equation.[7] At the moment the external force r is applied, the plunger resistance in the
dashpot is at its maximum. This resistance decreases until the velocity of the plunger
motion becomes equal to the strain rate _e ¼ const: Therefore, the stress growth rate _r
in the graph of Fig. 3 for the SLS model decreases until the stress becomes proportional
to the strain.
In contrast to the graph in Fig. 3, the experimental curves obtained for the actual

behavior of rubbers under repeated stretching (Fig. 1) have a peculiar S-shaped form.
At first, the stress growth slows down, to about 20%–30% of the deformation. After
that, there is a rapidly accelerating growth in stress with an increase in deformation in
the range from about 70% to 170%, as can be seen for curves 2–5 in Fig. 1. This
dependence of stress r on strain e is close to an exponential dependence. It can be
related to the exponential term g ¼ A exp E0

kBT
in Eq. (9). But this is the case if the vis-

cosity g in the dashpot of the SLS model depends on the stress r or strain e:
The dependence of viscosity on stress for the flow of non-Newtonian liquids accord-

ing to Eyring’s equation is well known[7]:

g ¼ Af exp
E0 � bf
kBT

(10)

Here A is the pre-exponential multiplier in the Eyring’s equation calculated by abso-
lute reaction rate theory, f is the shear stress at flow, b is the "viscous volume" coeffi-
cient by Eyring’s, E0 is the activation energy at 0oK, i.e. the height of the potential

Figure 3. Stress-strain dependence for the SLS model with constant strain rate _e:
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energy barrier for jumping into a vacancy of the molecular-kinetic units (MKUs) during
thermal motion of the molecules in the absence of external force, kB is the Boltzmann
constant, and T is the absolute temperature.
According to the statistical rubber elasticity theory,[1] the uncoiling of a macromol-

ecular chain in a polymer under tension causes the forces of entropic elasticity that
counteracts this tension, fen, to increase in proportion to the distance, r, between the
ends of the macromolecule:

fen ¼ 3kBT
Nl2

r (11)

Here, N is the number of statistical units per chain and l is the length of each unit.
In a thermally-activated process governed by the Frenkel mechanism, the flow of free

atoms or small molecules in a liquid proceeds by their jumping into vacancies as a
result of their own thermal motion.[8] According to Eyring’s equation (10), an external
force, f , applied to such a system decreases the activation energy of the jump of atoms
to the vacancy in the direction of the respective force.[7] Incidentally, a similar process
of plastic deformation can also occur in metals when the effects of external forces on
atoms are channeled through elastic interatomic linkages.[9]

As was shown in reference,[10] during the flow of polymeric fluids, the emerging
forces of entropy elasticity, fen, reduce the activation energy of the MKU jump in the
direction of the external forces by a magnitude proportional to the entropic elasti-
city force.
In polymer networks, however, the entropic elasticity forces cause the opposite effect:

they do not decrease, but increase the activation energy E0 of MKU jumping into
vacancies for the molecular chains of the elastomeric network.[11] The chains are
stretched during the jumps of the MKUs into vacancies in the direction of the external
force r: As the chain is stretched, the entropic elasticity force, fen, increases, and at a
constant rate of stretching,_e, the stress, r, on the sample increases to overcome the
potential barrier of the MKU jumping into vacancies in the stretching direction.
The process of deformation of the elastomeric chain in accordance with the

SLS model proceeds as a viscoplastic flow with the unfolding of the polymer chains of
the network in the direction of the external force, r: The flow process is reflected in the
SLS model as a dashpot with viscosity, g, and stress, rg, with the help of which the
MKU jumps into the vacancy in the direction of sample deformation e: Since, with
increasing deformation, the chains are stretched and the force of entropic elasticity
increases the resistance of the chains to an external force, r, this means an increase in
the potential energy barrier, E0, for the MKU to jump into the vacancy in the direction
of the deformation growth. In accordance with Eyring’s derivation of formula,[7] for the
flow processes in his Eq. (10), the activation energy should increase by an increase in
the stress of the dashpot, rg:
In the case of elastomer extension, Eyring’s formula for viscosity,g, would look like

this:

g ¼ Arg exp
E0 þ brg

kBT
(12)
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Now the equation of viscosity, g, when stretching elastomers according to the SLS
model, taking into account Eqs. (6) and (12), can be written as:

g ¼ Aðr� EeÞ exp E0 þ bðr� EeÞ
kBT

(13)

It follows that, under the SLS model, an increase in elastomer viscosity, g, upon
deformation reflects an increase in the resistance of the macromolecules of the polymer
network to the tensile stress generated when the elastomer is being extended.[11]

For the reverse deformation curves of a hysteresis loop, the entropic elastic forces,
fen, coincide with the retraction direction of the sample. The entropic elastic forces,fen,
because of the coiling chains, help jumping MKUs into vacancies during the retraction
of the sample in the direction of decreasing deformation; i.e. the potential barrier, E0,
to moving the MKUs is decrease. For the SLS model, in this case, the viscosity, g,
decreases by analogy with Eq. (10) and in accordance with Eq. (6): rg ¼ r� Ee:

g ¼ Aðr� EeÞ exp E0 � bðr� EeÞ
kBT

(14)

The relationship between external forces,r, and entropic elasticity forces, fen, in the
processes of stretching and retraction elastomeric networks allows us to estimate the
exponential dependence of external stress, r, on deformation, e: To do this, we write
Eq. (9) in the following form:

r ¼ ðH þ EÞ_e � _r
H

� Aðr� EeÞ exp E06bðr� EeÞ
kBT

6Ee (15)

The exponential term in Eq. (15) with a plus sign before the multiplier, bðr� EeÞ,
contributes to the rapidly accelerating rate of stress increase as a function of the stress
r on the strain e of the network when the sample is stretched, and with a minus sign
before the multiplier, bðr� EeÞ, in the exponential dependence of the stress r reduc-
tion on the deformation e, during the retraction of the sample, i.e. during the decrease
in the deformation when compressing for hysteresis loops.
Hysteresis measurements make it possible, therefore, to test the aforesaid influence of

the forces of entropic elasticity, fen, on the description of the strain curves for elasto-
mers based on the differential equation of the SLS model (Eq. (7)). As a suitable tool,
we can use Eyring’s formula (Eq. (10)) modified for the tensile and reverse-tensile
deformation scenarios, as shown in Eqs. (13) and (14).
Consider the possibility of confirming these deformation processes of elastomeric net-

works based on the example of the SLS model. We can now isolate the viscosity factor,
g, from Eq. (7), rewritten as Eq. (16):

gðH þ EÞ_e � g _r ¼ Hr� HEe (16)

Hence,

g ¼ Hðr� EeÞ
ðH þ EÞ_e � _r

(17)
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From Eqs. (13) and (17) we obtain:

Hðr� EeÞ
ðH þ EÞ_e � _r

¼ Aðr� EeÞ exp E0 þ bðr� EeÞ
kBT

(18)

We write A
H ¼ C, and after dividing both sides of Eq. (18) by the factor Hðr� EeÞ,

we obtain:

1
ðH þ EÞ_e � _r

¼ C exp
E0 þ bðr� EeÞ

kBT
(19)

Taking the logarithm of Eq. (19), we obtain Eq. (20):

ln
1

ðH þ EÞ_e � _r
¼ lnC þ E0

kBT

� �
þ b
kBT

ðr� EeÞ (20)

Based on the hysteresis curves constructed from the experimental data of specimens
subjected to tensile loading, the rapidly accelerating ascending stretch curve should,
under the SLS model, demonstrate a linear dependence of the value of ln 1

ðHþEÞ_e� _r on
the value of ðr� EeÞ according to Eq. (20). In addition the value of the rubbery modu-
lus, E, obtained from formula (5), should also change as the extension ratio, k ¼
1þ e, increases.
A similar linear dependence (20), but with a reverse sign, with a magnitude b

kBT
ðr�

EeÞ, must be observed during retraction of the rubber sample for the reverse deform-
ation of the hysteresis loop in accordance with the scheme shown in Fig. 5.

ln
1

ðH � EÞ_e � _r
¼ lnC þ E0

kBT

� �
� b
kBT

ðr� EeÞ (21)

The linearization of the experimental hysteresis curves in accordance with Eqs. (20)
and (21) will confirm the correctness of the proposed schemes of the effect of entropic
elasticity forces, fen, on the processes of stretching and retraction of elasto-
meric networks.

Experimental results

Rubber hysteresis was measured using a Zwick-Z 010 testing machine (the ZwickRoell
Group, ZwickRoell GmbH & Co., KG, Germany) complete with a MultiXtens extensom-
eter in accordance with DIN EN ISO 527-2/S2. The tests used dumbbell shaped specimens
of rubber according to ISO 527-2 in the form of a flat strip with a rectangular narrow sec-
tion of length 43mm. The rectangular sections were 2mm thick and 4mm wide. The test
length of a specimen, as measured with an extensometer, was 15mm. Series of hysteresis
curve measurements were performed at extension rates of 250 and 25mm/min at room
temperature (each series was repeated on a new specimen to assess the reproducibility of
the results). More tests were then performed at 50 �C (2 series for reproducibility), 75 �C
(3 series) and 100 �C (2 series), all at an extension rate of 25mm/min.
In each series the rubber specimens ware each taken through 5 rounds of tensile

deformation. The deformation was terminated when the stress reading reached the
specified nominal value of ca. 3.8MPa. Each deformation round was immediately fol-
lowed by reverse deformation at a retraction rate equal to the extension rate used earlier
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until the stress reading returned to the initial value of 0.1MPa, whereupon the specimen
was immediately stretched again (Figs. 1 and 4).
The material used for the experiment was a silicone rubber based on poly(methylvi-

nylsiloxane) (PMVS), as we used in Ref. [12]. The molecular weight inputs used in for-
mula (5) to calculate the rubbery modulus, E, were the molecular weight of a chain
segment extending between chemical cross-links, taken as Mc ¼ 80, 000, and the average
molecular weight for the PMVS, taken as M ¼ 600, 000: With these inputs, the formula
used to calculate the rubbery modulus E, based on Eq. (5) above, was Eq. (22):

E ¼ g � 0, 0227 � 2k2 þ 1
k

� �
(22)

Figure 4 compares the first (dashed line) and second (solid line) hysteresis curves,
shown in Fig. 1, but plotted in the true stress vs. strain coordinates. Experimental data
for the ascending tensile strain curves describing the first (1) and second (2) hysteresis

Figure 4. True stress vs. strain dependence for silicone rubber at room temperature with an extension
rate of 250mm/min for the first (dashed line 1) and second (solid line 2) hysteresis cycles from Fig. 1.

Figure 5. Dependence of ln 1
ðHþEÞ_e� _r on ðr� EeÞ for the ascending strain curve legs describing the

first hysteresis cycle from Fig. 4 (dashed line 1) and the second hysteresis cycle from Fig. 4 (solid
line 2).
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cycles were calculated using Eqs. (20) and (21), with the results shown in the graph in
Fig. 5.
The linear dependence expressed in Eq. (20) or (21) for the initial, decelerating seg-

ment (from e ¼ 0:018 to e ¼ 0:2 Fig. 4, Table 1) and the main ascending segment
(from e ¼ 0:2 to e ¼ 1:7, Fig. 4) of the hysteresis curves makes it possible to determine
the values of Flory’s correction, g, in Eqs. (5) and (22). This can be achieved by select-
ing the value of the rubbery modulus, E, according to Eq. (22), when analyzing the
experimental data for the graph in Fig. 5, such that the best possible linearity is
achieved for the linear dependences (20) and (21) for all cycles, as suggested in [12].
The Hooke modulus, H, in the SLS model and in Eqs. (20) and (21), can be calculated
as the limiting modulus for the glassy state in terms of the solubility parameter for a
particular polymer.[2] For silicone rubber,g, according Table II,3 Tobolsky’s,[2] the value
of the solubility parameter was d ¼ 7:3ðcal=cm3Þ1=2: From this one can calculate the
value H ¼ 1793MPa: Flory’s correction factor, g, calculated for the maximum correl-
ation coefficient of the linear regression of Eqs. (20) and (21), can be used to indicate
the number of labile physical cross-linkages which can participate in the deformation
process when a given elastomer network is being extended at a given rate _e in a given
temperature environment specified for rubber tensile tests.
The two sections in the graph in Fig. 5 for the increasing tension curve of the first

hysteresis loop (dashed lines) correspond to the two characteristic segments of the rub-
ber tension curve in Fig. 4. In the initial small segment of this tensile curve, in the
strain interval from e ¼ 0:02 to e ¼ 0:20 [ðr� EeÞ ¼ 0.169 to 0.714], a decrease in the
rate of stress growth with increasing strain was observed. The second, basic segment of
the tensile curve, in the interval from e ¼ 0:2 to e ¼ 1:7 ðr� EeÞ ¼ 0.778 to 5.804),
shows a rapidly accelerating stress increase with increasing strain.
A possible explanation is as follows. At small deformations, the displacement of

molecular-kinetic units of polymer chains with accompanying destruction of weak inter-
molecular bonds between them occurs. Their movement corresponds to the plastic flow
of the material. Moving free chain ends can also be described as a flow process. Plastic
flow is accompanied by a decrease in the activation energy in the Eyring’s equations
(10) and (14) for the SLS model[10] with the minus sign before the viscous element
stress, rg ¼ r� Ee: A decrease in the number of intermolecular bonds that hold the
chains reduces the viscosity, g, of the medium.
As the tensile process continues, the material’s response to it begins to change when

the stretching of the polymer chains comprising the main elastomer network comes
strongly into play. The resistance of these chains to external loading increases the acti-
vation energy due to the growth of the entropic elasticity forces, fen, of the macromole-
cules in accordance with relation (12), (13), and (20).

Table 1. Flory’s corrections for linear segments according to dependencies (20) and (21) for the
increasing deformation of the hysteresis cycles from Figs. 4 and 5.
Hysteresis cycle number Strain ascension interval g R2 b

kBT

1 1.8%–20.0% 24 0.9956 �0.0037
1 21%–170% 0.6 0.9960 þ0.0003
2 21%–56% 10 0.9907 �0.004
2 65%–164% 4.5 0.9975 þ0.0019
2 166%–179% 0.1 0.9512 �0.0012
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Consideration of the results

The details of the strain curves for the first and subsequent repeat hysteresis cycles
reflect the connection between the deformation processes occurring in rubbers and
related changes in their molecular and supramolecular structure. Let us consider, step-
by-step, possible explanations for these connections, working on the premise that the
dependences in Eqs. (12), (13), and (19)–(21) hold.

1. For all series of hysteresis cycles, the ascending leg of the first-cycle strain curve
usually has two segments where the linear dependences per Eqs. (20) and (21)
visibly hold.

2. Another important fact concerning namely the repeated curves of the hysteresis
cycle is that they began to have a third segment in the ascending tensile curve
leg during the subsequent stress applications corresponding to the final stages of
the tensile deformation process. Namely, the deceleration of the stress growth of
the tension curve in the strain interval of 1.66–1.79 (solid line in Fig. 4). When
the curve data were analytically transformed to fit the coordinates of Eqs. (20)
and (21), this growth deceleration becomes manifest in the term ðb=kBTÞðr�
EeÞ (Table 1), which took on a negative value, as can be seen in the graph in
Figs. 6(a) and 6(c) (below).
In other words, there is a decrease of resistance of entropic elasticity forces to

external stress r: The most plausible explanation for this fact is the breaking of
chemical bonds and their accompanying physical bonds (g � 0:1� 1:3, see
Tables 3–7) in parts of the network when stretching the constituent chains
beyond their ultimate tensile strength; the viscosity of the medium decreases due
to a reduction in the number of network chains that resist the external force.

Figure 6. Approximation of Eqs. (20) and (21) for the initial (a), main (b) and final (c) linear segments
of the ascending strain curve leg describing the second hysteresis cycle in Fig. 4.

Table 2. Flory’s correction factors for the main and final segments of the reverse strain curve legs
describing the hysteresis cycles from Figs. 4 and 5.

Hysteresis cycle number Strain reversal interval g R2 b
kBT

1 173%–103% 7 0.9985 �0.0042
1 65%–25% 70 0.9993 þ0.0005
2 178%–81% 5.65 0.9971 �0.0038
2 70%–29% 81 0.9984 0.0005
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This is also reflected in Eq. (14) as a decrease of total activation energy ½E0 �
bðr� EeÞ� in the viscosity exponent. In addition, the torn network fragments
represent the free ends of the chains. During further stretching, the entropic

Table 3. Flory’s corrections for linear segments of dependences (20) and (21) for hysteresis curves
with an extension rate of 250mm/min at room temperature.
Hysteresis loop number
Strain
Curve Segment
Number 1 2 3 4 5

1, deformation, % 1.8–20 21–56 24–53 26–57 27–49
Flory’s correction factor, g 24 10 9 8.8 9
2, deformation, % 20–167 65–164 82–176 87–182 68–185
Flory’s correction factor, g 0.6 4.5 4 4.5 5
3, deformation, % – 166–179 177–185 184–188 188–190
Flory’s correction factor, g – 0.1 0.1 1.3 0.3
4, deformation, % 172–103 178–81 184–105 189–71 191–76
Flory’s correction factor, g 7 5.65 5.8 5.6 5.5
5, deformation, % 65–25 70–29 73–31 71–30 76–26
Flory’s correction factor, g 70 81 127 150 95

Table 4. Flory’s corrections for linear segments of dependences according to Eqs. (20) and (21) for
hysteresis curves obtained at an extension rate of 25mm/min at room temperature.
Hysteresis
Loop number
Strain
Curve segment number 1 2 3 4 5

1¼ ascending, initial 23 10 9 8.5 8.3
2¼ ascending, main 0.1 5 5 5 5
3¼ ascending, final – 0.2 0.1 0.1 0.2
4¼ reverse, main 6.5 5.5 6 5.9 6
5¼ reverse, final 139 72 71 51 93

Table 5. Flory’s corrections for linear segments of dependences according to Eqs. (20) and (21) for
hysteresis curves obtained at an extension rate of 25mm/min at 50 �C.
Hysteresis
Loop number
Strain
Curve segment number 1 2 3 4 5

1¼ ascending, initial 21 10 9.5 10 9
2¼ ascending, main 0.4 5 5 5 5
3¼ ascending, final – 0.2 0.2 0.8 0.5
4¼ reverse, main 6 6 6 6 5
5¼ reverse, final 32 43 34 42 51

Table 6. Flory’s corrections for linear segments of dependences according to Eqs. (20) and (21) for
hysteresis curves obtained at an extension rate of 25mm/min at 75 �C.
Hysteresis
Loop number
Strain
Curve segment number 1 2 3 4 5

1¼ ascending, initial 16 10.2 12 11 9
2¼ ascending, main 0.2 5.5 6 6 6
3¼ ascending, final – 0.2 0.1 0.9 0.5
4¼ reverse, main 7 6.7 6.3 6 6
5¼ reverse, final 40 39 73 39 55
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elastic forces cause these free ends to coiling in the direction of deformation.
This is similar to the polymer chain flow process and is described as viscosity
reduction[10] by Eqs. (10) and (14).
Flory’s correction factors, g, were calculated using Eqs. (20) and (21) based on

the best possible linearity solutions for the linear segments of the experimental
curves in Fig. 5. The Flory corrections were calculated for the linear segments of
increasing deformations of the first hysteresis cycle (dashed line) and the second
hysteresis cycle (solid line) shown in Fig. 5. They are listed in Table 1. Table 1
also presents the correlation coefficients, R2, for the linear dependences (20) and
(21) and the slope values, b

kBT
, for these dependences, with the results described

in Sec. 3 below.
3. Table 1 data for the first hysteresis loop shows that the beginning of the tensile

process (in the interval of 1.8%–20.0%) was associated with a large value of g ¼
24, which can be explained by the large number of weak physical cross-links
formed by the close intermolecular bonds of the initial molecular structure.
These can be bonds formed by pass-through chains between the clusters of the
main network of chemical and physical bonds of the elastomer. Clusters—areas
of the local structure in amorphous polymers.[13] After the destruction of these
intermolecular bonds at the initial stage of tensile deformation, the ascending
section of the curve showed a transition to the second main stage of the deform-
ation process (in the range (21%–170%), in which, apparently, a significantly
smaller number of pass-through chains between elastomer clusters are involved.
In other words, only a fraction of the chemical and physical cross-links were at
play here. In this process, the value of Mc was increased and hence the Flory’s
corrections decreased to g ¼ 0:6 (i.e. was less than one).

4. For repeat hysteresis cycles, the process attributed to the initial portion of the
ascending strain curve (in the interval of 21%–56%) leg also involves a large
number of intermolecular physical cross-links, so g ¼ 10: Since clusters may be
partially destroyed during the first hysteresis cycle, the tensile process described
by the main ascending segments of repeat-cycle curves (in the interval of
65%–164%) are suggested to involve a greater number of the network’s chemical
cross-links within the clusters. The number of related physical cross-links formed
as a result of chain entanglements and chain interlocks will also be greater.
Consequently, the value of Flory’s correction factor will be greater here than it
was in the case of the tensile curve describing the first hysteresis cycle: i.e. g ¼
4:5 (Table 1).

Table 7. Flory’s corrections for linear segments of dependences according to Eqs. (20) and (21) for
hysteresis curves obtained at an extension rate of 25mm/min at 100 �C.
Hysteresis
Loop number
Strain
Curve segment number 1 2 3 4 5

1¼ ascending, initial 23 12 11 10.7 10.5
2¼ ascending, main 0.1 6 6 6.5 7
3¼ ascending, final – 0.2 0.3 0.4 4.5
4¼ reverse, main 8 7 6.5 6.75 6
5¼ reverse, final 74 80 82 65 74
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Figure 6 shows the graphs of the dependences based on Eqs. (20) and (21) and
the values of Flory’s correction factor, g, for the ascending strain curve leg
describing the second hysteresis cycle (Fig. 4). Here, the selection of g for the
purpose of calculating the rubbery modulus E, using Eq. (21), was made using
the maximum value of the correlation coefficient between the linear dependences
in Eqs. (20) and (21).
The approximations of Eqs. (20) and (21) for the reverse strain curve legs

describing the first and second hysteresis cycles, as well as the related values of
g, are shown in Fig. 4. This figure shows the angles of inclination b

kBT
¼ �0:0042

and the degree of straightening R2 ¼ 0:9985 for the main segment
(172.5%–103.2%) of the reverse curve of the first hysteresis loop. The value of
the Flory correction for this segment g ¼ 7:
Table 2 presents the calculated values of g, R2 and 6 b

kBT
for the experimental

reverse deformation curves describing the first (1) and second (2) hysteresis
cycles, which are shown in Fig. 4, and are discussed in more detail in Sec. 5
below. The large values of Flory corrections, g for the end segments of these
curves, 70 and 81, are 10 times larger than those for the main segments of the
decreasing reverse curves. This situation is difficult to explain and requires
hypotheses of a strong change in the structure of physical bonds when the rub-
ber is deformed in these areas.

5. The reverse strain curve associated with all of the hysteresis cycles suggest a con-
clusion to the effect that such reverse curves for rubber feature only two segments.
While the crosspiece of the testing machine was moving back to its initial zero-
strain position, the stress on the sample decreased exponentially. Calculations
based on Eqs. (20) and (21) show that the main process involved in deformation
is reversible return deformation of rubber, characterized by a negative slope on
Eq. (21), as shown in Fig. 7(a). In the final stage of the reversal curves (65%–25%)
an accelerated stress drop occurs, where the slope of the dependence according to
Eq. (20), is positive and Flory’s correction values are higher, as is evident for each
of the final segments 2 in Fig. 7(b). The process behind the first segment of the
reverse strain curve describing the first hysteresis cycle (172%–103%) may be
explained by the action of the chains coiling back on themselves while carrying
along some of the entangled and interlocked structures. These physical cross-links
increased Flory’s correction factor to g ¼ 7: The second segment of the reverse
strain curve (65%–25%) takes shape due to the intense intermolecular attraction
arising between segments of coiling chains as they approach each other and
deformation retardation. This attraction is governed by intermolecular bonds
which slow down the movements of the chain fragments, thereby producing a
sharp increase in the number of physical cross-links and driving Flory’s correction
value up to g ¼ 70 and g ¼ 81 for cycles 1 and 2, respectively.
For comparison, Table 3 shows the values of Flory’s correction factor for the

entire series of five hysteresis loops obtained at a deformation rate of 250mm/min
at room temperature. Calculated values are listed for the ascending and reverse
tensile curves. It is necessary to note five stably repeating segments of the strain
curves for the repeated hysteresis loops, in which there is a deceleration or
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acceleration of stress growth or stress drop at a constant strain rate. For an
ascending strain curve: segment 1—decelerating of stress growth (Figs. 4 and 5,
also Table 1 for the strain intervals 21%–56%); segment 2—accelerating of stress
growth (Figs. 4 and 5, also Table 1 for the strain intervals 65%–164%) and seg-
ment 3—decelerating of stress growth again (Figs. 4 and 5, also Table 1 for the
strain intervals 166%–179%). And for the reverse hysteresis curves: segment 4—
decelerating of stress drop (Figs. 4 and 5, also Table 2 for the strain intervals
178%–81%) and segment 5—accelerating of stress drop (Figs. 4 and 5, also Table
2 for the strain intervals 70%–29%).

Table 3 data warrant the following conclusions (5.1–5.8).

5.1. The first hysteresis loop differed significantly from all subsequent loops in
the series with identical tensile deformation conditions. Flory’s correction
for the initial segment of the ascending tensile curve leg was substantially
larger than all similar Flory correction values for the initial ascending curve
segments in the case of the repeated hysteresis loops.

5.2. For subsequent hysteresis loops, the original closely-packed chain structure
was not restored. Residual strain was observed (18.9–25.6% at 25 ��, see
Table 8), and the values of Flory’s correction factor g go down 2-fold for the
initial segment of the ascending strain curve leg. However, they remain quite
large and do not change much from one hysteresis cycle to another (ranging
between 8.8 and 10 units, Table 3) during the period described by the initial
tensile curve segment. Apparently, at the beginning of stretching, the close
intermolecular bonds of the initial structure of the coiled chains are broken.
This leads to a reduction in the number of chains exerting entropic resist-
ance to the external force. This is reflected in the negative slope for the rela-
tionship represented by Eq. (21) (tab. 1 and Fig. 6a) and in reduction of the
deformation activation energy.

5.3. For the first hysteresis loop, the main ascending tensile curve segment is
based on how some of the shortest inter-junction chains that extend
between clusters beginning to stretch and uncoil. As they do so, the clusters
gradually begin to disintegrate. The process associated with this curve

Figure 7. Approximation of Eqs. (20) and (21) for the main segment (a) and the final segment (b) of
the reverse strain curve legs describing the first (1) and second (2) hysteresis cycles, as shown in Fig. 4.
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segment does not seem to involve a large number of chemical cross-links or
to be accompanied by failures of physical cross-links. This explains why the
values of Flory’s correction factor for all main ascending tensile curve seg-
ments describing only the first hysteresis loop remain significantly below
unity. Specifically, g was equal to 0.6 (see Table 3), or 0.1–0.2 for other tem-
peratures (see Tables 5–7 below). Here, the activation energy for the
deformation process increased pursuant to Eq. (20). According to Eq. (11),
the forces of entropic elasticity generated by the uncoiling chains increase in
the direction opposite to that of the increase in strain. Consequently, the
activation energy for the ascending strain curve leg increases, as given in
Eqs. (12) and (13). This is translated into weak accelerating increase of
stress, as observed on tensile curves for elastomers (Figs. 1, 4, and 5).

5.4. For repeat hysteresis loops, the second (main) ascending segment of the strain
curve is the region where the entire elastomer network is stretched, and where
all intercross linking chains contribute to the growth of the activation energy
by creating the forces of entropic elasticity according to Eq. (12). At the same
time, the resistance of physical cross-links, having the form entanglements,
drives Flory’s correction upward. For all repeat hysteresis loops at all meas-
ured rates of specimen elongation and temperatures measured, Flory’s correc-
tion factor stood at ca. 5–7 units (see Tables 4–7 below) throughout the length
of this ascending curve segment.

5.5. The third (and final) segment of the ascending tensile curve leg reflected a
buildup of stress to values so high that the relatively short chains with chemical
cross-links would begin to stretch and break. In this scenario, the number of
chemical cross-links decreases, as does the number of their physical counter-
parts. As a result, the values of Flory’s correction (g ¼ 0:1� 0:3) become very
small, almost 20–100 times smaller than those for the rest of the hysteresis
curve segments. This leads to an decrease in the activation energy, E0, and an
decrease in viscosity g due to the decrease in the number of resisting chains,
an increase in the value Mc and, accordingly, a decrease in the values g:

5.6. For all hysteresis loops, the main, fourth segment of the inverse deformation
curve describes the deformation process, in which all intercross linking
chains "help" the crossbar to return to its original position with the zero
deformation. These chains coiling and MKU jump into vacancies toward
decreasing deformation. This leads to a decrease in the activation energy, E0,
of plastic flow according to Eq. (21) (Fig. 7a). The slope values for

Table 8. Residual strain, %, for hysteresis curves obtained at various temperatures and exten-
sion rates.
Hysteresis
Loop number
Temperature/Extension rate 1 2 3 4 5

25 �C/250mm/min 18.9 22.14 23.87 25.0 25.6
25 �C/25mm/min 17.3 20.0 22.0 23.3 24.4
50 �C/25mm/min 15.4 18.2 20.1 21.4 22.3
75 �C/25mm/min 14.3 16.7 18.0 18.9 19.4
100 �C/25mm/min 10.55 12.8 13.9 15.4 16.2
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dependence 1
ln ðHþEÞ_e� _r on ðr� EeÞ in Eq. (21) were negative. All entangle-

ments and interlocks (i.e. physical cross-links) contribute to this mass-scale
coiling of chemically-linked intercross linking chains. Here, the value of
Flory’s correction was the same as that for the process described by the
main ascending segment of the strain curve (about 5 units). These values
were the same for all test extension rates and temperatures.

5.7. For the fifth, the last segment of each reverse curve, Flory’s corrections were
almost 10–30 times the respective values applied for all the main (second
and fourth) segments of the repeat hysteresis curves. This may have to do
with the mass-scale formation of close intermolecular bonds by intercross
linking chains as they continue coiling. During this coiling process, which
occurs at the last stage of deformation, the chains will resist external deform-
ation, which increases the activation energy E0 and viscosity g of the sample.
Here, the tangent b

kBT
of the slope angle for Eq. (20) is positive and Flory’s

correction values g are in the range from 32 to 150 units (Tables 2–7).
5.8. Overall, the main (second and fourth) segments of the ascending and reverse

tensile curves have Flory’s corrections of the order of 5–10 units for all tem-
peratures and deformation rates.

Tables 4–7 show the results of hysteresis measurements obtained at a deformation
rate of 25mm/min at room temperature and at 50, 75 and 100 �C, respectively, with the
prior results being for a deformation rate of 250mm/min at room temperature.
As shown by a comparison of Flory’s corrections in Tables 3–7 we reached the fol-

lowing conclusions:

1. The numerical values of Flory’s corrections were independent of the test tem-
perature and extension rates. We suggest that they reflect the tendency of poly-
mers to preserve a fairly stable structure during mechanical tests.

2. Flory’s corrections obtained for repeat hysteresis curves fell close together, so
only the first hysteresis curve seems to stand out as different. This is indicative
of a change that occurs in the initial polymer structure due to the failure of its
weak constituent elements causing the system to move to a more stable and sus-
tainable dynamic elastomer structure. This transition manifests itself in the
Mullins effect. As a result of the partial failure of the bonds initially present in
the network polymer, the material begins to show a slight residual strain, which
changes little during subsequent hysteresis cycles.

3. On the hysteresis curves, five stable segments of the strain curves can be noted.
There are three segments for ascending strain and two sections for reverse strain.
For each of them, sufficient reproducibility and the characteristic value of the
Flory corrections were observed, for all samples.

4. The two main segments of the tensile curves, which are also the longest, viz. the
second (ascending) and the fourth (reverse), have Flory’s correction values which
stand close to each other, which means participation of all chains between the
chemical cross-links of the elastomer network in these two stages of the deform-
ation process. These structures are almost independent of the number of
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hysteresis cycles. Another parameter that seems to remain unchanged is the
number of physical cross-links. In the case of the PMVS-based elastomer we
have studied, Flory’s correction factor,g, had a value of 5–7 units.

5. A high-accuracy description of elastomer deformations can be obtained using the
basic equations of the statistical deformation theory and Eyring’s formula, modi-
fied to account for the entropic nature of deformation in polymers. For the
ascending stress segments of the hysteresis curve, these equations indicate an
increase in tensile activation energy under the SLS model. For the reverse curve
leg, the equations indicate a decrease in deformation activation energy. In this
context, the SLS viscosity formula for polymers in a rubber-like state can be writ-
ten in the following form:

g ¼ A r� Eeð Þ exp E06bðr� EeÞ
kBT

(23)

6. The presence of small segments at the start and end of the ascending strain
curve leg (identified herein as the first and third segments of the hysteresis cycle)
highlight a slowdown in the stress growth process, which can be attributed to a
decrease in the process activation energy. At the same time, there was a signifi-
cant change in Flory’s correction values.

7. It is the fifth or end segment of the reverse hysteresis curve that has an especially
abrupt (upward) change in the value of Flory’s correction factor. This may be
interpreted as resulting from a strong growth in the number of physical cross-
links due to intermolecular forces arising during the final stage of the elastomer
chain-coiling process.

It is, thus, evident that elastomer deformations can be described as a interrelated pro-
cess. On the one hand, we have the molecular structure as a factor affecting how the
deformation will progress, how much and how rapidly the stress will grow and how
stiffly the macromolecules will resist the external force when being stretched. On the
other hand, we have the strain value as a factor affecting the structural state of the
elastomer network formed by the chemical and physical cross-links. This mutual influ-
ence pattern is fairly reproducible and consistently recurs in series of measurements of
elastomer hysteresis loops.
The principal driver behind this reciprocity is the entropic nature of the forces occurring

in macromolecular systems. This peculiarity in deformation behavior of macromolecular
solids is ultimately attributable to decreases or increases in the activation energy required
for atoms and molecular-kinetic units to migrate into vacant sites during deformation.
Such changes in energy barriers can be viewed as representing increases or decreases

in viscosity during the macromolecular stretch-and-flow process. This anomalous fea-
ture of macromolecular viscosity affects the deceleration or acceleration of stress growth
observed for the different segments of the tensile and reverse-tensile curves when meas-
uring the hysteresis of elastomers.
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Conclusions

We have analyzed the relationship between the mechanical properties of elastomers and
their network structure. Proceeding from the basic equations of the classic statistical
theory of rubber elasticity, we showed that a quantitative evaluation of the effects of
labile physical cross-links on the deformation behavior of network elastomers (as deter-
mined from rubber hysteresis curves) is actually possible.
The role of physical cross-links in rubber deformations was assessed based on Flory’s

correction factor, which accounts for how cross-link flaws in network polymers can
affect the deformation process flow throughout all stages of extension and recovery in
the course of hysteresis.
The use of Eyring’s equation (10) viewed through the prism of Frenkel’s ideas about

the flow mechanism at work in condensed media made it possible to rectify the primary
inconsistency found in quantitative descriptions of strain curves for rubbers, viz. the
discrepancy arising between the theoretical and experimental strain data for elastomers
at large strains. This was achieved by modifying the exponential viscous flow equation
(10) for polymers by factoring in the decreases or increases in deformation activation
energy by amounts that accounts for the entropic elasticity force generated by macro-
molecules exposed to tensile action.
The Standard Linear Solid (SLS) model was used as a framework for measuring how

the stress value depends on the magnitude and rate of strain in calculating the isother-
mal Young’s modulus E: The value of Flory’s correction factor g was incorporated in
the equations obtained herein (which were linearized as much as possible) as an indica-
tor proportional to the number of physical cross-links arising during deformation and
contributing to the deformation behavior.
A study of the repeat hysteresis loops uncovered distinctive, consistently recurring

segmentation patterns in the curves describing the deformation behavior of silicone rub-
bers: the ascending curve legs, were comprised of three segments each, whereas the
reverse curve legs were comprised of two segments each.
The calculated data obtained for the experimental hysteresis curves showed good

reproducibility of the numerical values of the Flory corrections applied for both tensile
and reverse tensile deformations of the sample, as described for each of the identified
segments of the curves. The proposed approach makes it possible to easily and quickly
determine a value proportional to the number of cross-links present in reticulated
elastomeric materials when they are subjected to mechanical stress.
The values of Flory’s corrections factors were analyzed with a view to developing

hypotheses about how elastomer network structures behave during the individual
phases of constant-rate deformation tests (as described by different segments of the
respective strain curves, including those comprising the reverse curves of the hyster-
esis loops).
The findings of this study thus suggest that it is now possible to establish a quantita-

tive correlation between the structural features of network polymers and their mechan-
ical properties.
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