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Based on a simple molecular model, a mechanism of rubber flow characterized by a viscosity 

increasing with the reversible rubber-like deformation is proposed. It is associated with an 

activation energy of viscous flow which increases proportional to an external stress due to the 

entropy elasticity of macromolecules. This increase of the activation energy for jumping of 

molecular-kinetic units of a polymer network into vacancies during the rubber deformation 

process is caused by an increasing resistance of the stretching macromolecular network due to 

the entropy nature of macromolecule deformation. 
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Introduction 

 

The most striking peculiarity of the process of rubbers extension is the increase in the rate of 

increase of stress right up to breaking elongation. Calculations of the dependencies of stress on 

strain, constructed on the basis of the kinetic theory of rubber-like elasticity do not completely 

coincide with the experimental extension curves of rubber, especially with large extension[1].  

The application of Eyring’s ideas regarding  the influence of an outside force  on the process of 

thermally activated flow in condensed matter[2] gives the possibility to describe, simply and 

fully, the stress-strain curves of rubbers on the basis of  a three-element model  of a standard 

linear solid (an SLS) as shown in Fig. 1.   

 

Figure 1. Model of a standard linear solid 

 

For the model SLS H   - is the elasticity modulus with extension for the spring connected with a 

viscous element (dashpot) of the model. This modulus represents Hookian elasticity forces. E  - 

Is the rubber-like modulus, presented by the elastic spring parallel to the viscous element. This 

spring is responsible for the reversible rubber-like strain. η  -  is a viscosity factor for a viscous 

element, σ  - is the stress applied to the SLS model , ε  - is the resultant deformation of the 

model. 

When phenomenologically describing the behavior of a polymer in accordance with the model 

SLS,  ε  is the total strain, to equal   the rubber-like strain  enε  , which has an entropic character. 

The spring with an elastic modulus E  represents an entropic component of stress:  

en enE Eσ ε ε= = .  
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The general stress is made up of the entropic stress enσ  and the elastic stress eσ , for the spring 

with the elastic modulus H . The elastic stress eσ   is equal to the stress on the dashpot ησ  . Thus 

the stress on the dashpot, or the elastic stress, is equal to the difference between the total stress 

and the entropic stress:  e en Eησ σ σ σ σ= = − = − ε  .   

Frenkel has suggested one can consider the flow process in a liquid as the thermally activated 

jumps of atoms into vacancies over an energy barrier[3] . Eyring used the theory of absolute 

reaction rates for describing the liquid flow process[2,4] . He also took into account the effect of 

an external force, decreasing the jump activation energy according to the formula: 

 

      0exp
B

E bfAf
k T

η −
=               (1) 

 

Here A  , the pre-exponential factor, is calculated by the theory of rate processes,  is the shear 

stress in the flow process,   the activation energy at 0

f

0E oK, that is, the height of the barrier of 

potential energy for the jump into a vacancy of molecular-kinetic particles in the course of 

thermal movement of molecules in the absence of an external force, b  - is a “viscosity factor” 

according to Eyring,  - is Boltzmann’s   constant, and T  is absolute temperature. Bk

 

Discussion 

 

It follows from еqn. (1) that the viscosity of a liquid exponentially decreases with increasing 

shear stress during flow. This phenomenon is known as a “viscosity anomaly” of flow and has 

been experimentally confirmed, mainly, for polymer melts and solutions[5] . However, for most 

non-polymeric liquids, the viscosity does not depend on shear stress. This contradiction can be 

eliminated if one takes into account the basic feature of chain macromolecules, that is, the 

entropy character of their reversible rubber-like deformation. It is the tendency of 

macromolecules, stretched in the flowing liquid, to curl up back to the initial, most favorable, for 

a given temperature, conformation that causes a decrease of activation energy in flowing 

polymer liquids. The dependence of viscosity on the magnitude of the reversible rubber-like 

deformation was proposed in ref.[6] :  
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Here B is the pre-exponential factor, τe is the shear stress, δ is a coefficient characterizing the 

volume of molecular-kinetic units of the macromolecule, determined by the structure of the 

polymer and the flow conditions, E0 is the activation energy determined by the height of the 

energy barrier, Ge is the shear modulus of the macromolecular network, and γe is the reversible 

rubber-like shear deformation.  

In the absence of deformations and stresses in a solid substance the spontaneous transfer of 

atoms and groups through the vacancy in the whole volume of the material doesn’t occur.  

However, the transfer into vacancy and back is possible in the course of oscillatory movements 

of atoms owing to fluctuations of thermal energy. Thereby the rate of direct and return transfer is 

equal[7] . In the event of extension of an elastomer with constant rate of strain at the expense of 

elastic extension of the covalent backbone  bonds and the subsequent thermally activated jump 

of the molecular-kinetic units of macromolecules in the vacancy, there begins a migration of 

these units in the direction of an outside force. When this occurs, there is a change in the relative 

rearrangement of the units to each other; which is, in effect a manifestation of material flow. 

An attempt to describe the deformation process of solids, including polymers, with the help of 

the theory of rate processes was made by Eyring and co-authors using Maxwell’s and SLS 

models[4,8,9] . However, these descriptions lead to stress-strain curves with monotonic decreasing 

rate of the stress growth in constant strain-rate tests. Then the stress, with time, passes either to 

the constant stress - yield stress, described in Maxwell’s model or the constant speed of stress-

increase described in the SLS model[10] . In all cases, the description of the deformation of 

materials was made according to eqn. (1). 

However, this approach contradicts the fact that the rate of the stress increase in an elastomer 

increases with deformation. In our view, this fact can be explained by the influence of a 

reversible rubber-like deformation on the activation energy in the rubber deformation process. 

This influence is based on the entropy character of chain deformation in a polymer network.  

 

Mechanism of Extension of Rubber  
 

It is possible to represent this peculiarity of polymer networks having an effect on the process of 

their deformation by using the molecular model of the deformation of a polymer schematically 

illustrated in Fig. 2.  



 
Figure 2. Diagram illustrating the transfer of molecular-kinetic units of a chain of an 

          elongated polymer network to a vacancy in the event of unidirectional elongation 

 

First, let us consider a simplified scheme of stretching a fragment of a polymer chain, such as 

stretching a chain between crosslinks of the polymer network. The ends of this chain are fixed in 

the grip of the tension testing machine (Fig. 2). The stationary grip is depicted in the figure to the 

left of the hatched border. On the movable grip to the right of the arrow, the elongation direction 

is shown. During deformation there is the extension of the polymeric chain with the change of its 

conformation with preservation of covalent backbone bonds. The applied external force helps 

overcome the intermolecular interaction forces as well as forces preventing the turning of 

backbone units with respect to each other. The process of a stretching of a chain is realized by 

the jump of a molecular-kinetic unit of a chain to a vacancy during fluctuations of thermal 

oscillations of atoms[3]. Thus the external force, transferring elastic energy of the extension 

through covalent backbone bonds, helps to break a potential barrier for the transition of a kinetic 

unit from one position of equilibrium to another, in the vacancy[4] . 

To simplify consideration of the flow process we will assume that molecular-kinetic unit of the 

stretching chain (the chain of the black circles, Fig. 2) is situated in one upper plane and moves 

under the influence of external stress  relative to neighboring atoms of other macromolecules 

situated in the lower plane. Neighboring atoms or molecular-kinetic units are depicted as black 

circles. 
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Analogous to Eyring’s conclusion   regarding the process of liquid flow from the position of the 

theory of rate processes[4] let as assume that for the model in Fig. 2 the difference in rate of shift 

of molecular-kinetic units of the extended chain in the upper  plane relative  to the neighboring  

units in the lower plane is equal to u∆  , the distance between the planes is 1λ ,  the distance 

between the neighboring molecular-kinetic  units in one plane is 2λ  and 3λ  , and the distance 

between the two positions of equilibrium is λ .  

The straightening and shift of the macromolecule fragments in the volume of the polymer, 

induced by an external stress, leads to a spatial redistribution of their molecular-kinetic units, i.e. 

to a flow. The motion of molecular-kinetic units is achieved via turning of backbone units. The 

shifting unit depicted in Fig. 2 as a white circle in the upper flat area under the influence of the 

external force jumps to a new position of equilibrium, into a vacancy, depicted as a cross, in the 

during of fluctuations in their thermal oscillations. 

Let us consider the distribution of forces on a moving unit of flow in some intervals of time after 

the jumping into the vacancy and the establishment of equilibrium of forces taking place after 

this. From the right side this unit is subjected to the external force. From the left side (the side of 

the stationary grip) it is subjected to the force resisting the deformation, ef , which is opposite in 

direction to the external force. 

Both these forces impede the transfer of kinetic units into the vacancy since the fluctuation of 

thermal energy must also overcome these forces of elastic energy. 

Further growth of extension causes an increase in entropic elasticity forces of the stretched 

chains en Eσ ε=  , where E  is the rubber-like elasticity modulus (see Fig. 1), and ε  is the 

rubber-like deformation equal to the general deformation of the sample for the SLS model. It 

leads to an increase of resistance of kinetic units to a flow; i.e. to growth of a potential barrier of 

a jump into the vacancy. For the realization of  the process of kinetic units jumping, an increase 

in external force, σ ,  of some size exceeding the growing size of the force of jumping  

resistance,  i.e. the forces of entropic elasticity Eε ,   is required. This gain of external force of 

size ( )Eσ ε−  during straining of the rubber provides the necessary energy for overcoming the 

growing potential barrier of the jumping of kinetic units of a stretched polymer rubber network, 

i.e. results in the flow of the material during the strain. 

Taking into account that the gradient of flow between the two layers of the molecular model in 

Fig. 2 is equal to 
1

u
λ
∆  , and the force resulting in flow, i.e. in the movement of the upper  layer, is  

equal to ( )Eσ ε−  , we obtain a coefficient of viscosity η  when flowing equal to : 
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 1( )E
u

σ ε λη −
=

∆
             (3) 

 

As applied to the diagram in Fig. 2, the force applied to the shifting kinetic unit in the direction 

of movement is equal   2 3( )Eσ ε λ λ−  , since  2 3λ λ   is an effective site size corresponding to one 

molecular-kinetic unit of flow (Fig. 2). This force enables a shift of the kinetic unit into the 

vacancy.  By this motion the valence bonds of a macromolecule are not broken, and resistance to 

motion  of the kinetic unit  in to the vacancy increases. 

Consequently, the additional energy which the kinetic unit needs to acquire to reach the peak of 

the energy barrier at a distance of  1
2
λ   and overcome the potential barrier with activation 

energy of , is equal to the quantity  0E 2 3 2 3
1 1( ) ( )
2 2

E Eσ ε λ λ λ σ ε λ λ λ− = −  . The activation 

energy increases to this quantity at the time of the jumping of a kinetic unit into a vacancy.  

According to the theory of rate processes[4]  the specific rate of flow in the direction of force kσ  

(the number of transitions of a kinetic unit through a barrier in one second) will be given by: 

 

      
0 2

1 ( )
2exp( )b a

B

E Ek T Fk
h F k Tσ

3σ ε λ λ λ+ −
= ⋅ −             (4) 

 

Here  and  are the partition functionsF aF [2]  of a unit volume of kinetic units in their initial and 

activated state,  - Planck’s constant. Because of the forced character of deformation of a solid 

body, when the direction of action of the external force is continuously directed to the moving 

grip, it is possible to disregard the rate of jumps of the kinetic units in the direction opposite to 

the external force.  As  the kinetic unit moves the distance 

h

λ   in one jump, so the rate  of 

movement   of a layer with a macromolecule under strain relative to the lower  layer  will  be  

equal to 

u∆

u kσλ∆ =  , and the coefficient  of viscosity due to  the strain will  be equal to: 

 

       1 1

0 2 3

( ) ( )
1 ( )
2exp( )aB

B

E E
k E EFk T

h F k T

σ

σ ε λ σ ε λη
λ λ λ λ σ ε

λ

− −
= =

+ −
⋅ −

  (5) 
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Let us present this expression thus: 

 

  0 ( )( ) exp( )i
i

B

E b EA E
k T
σ εη σ ε + −

= −             (6) 

where 1
i

B a

h FA
k T F
λ
λ

= ⋅  - is the pre-exponential factor in the expression for viscosity of flow  

under stress during strain of the rubber, and 2 3
1
2ib λ λ λ=  - is the volume  coefficient 

characterizing the structure of the molecular-kinetic units taking part in the jumping  in to the 

vacancy, that is to say in flow. Let us assign to coefficients   and  the index   (increment) to 

indicate the growth of activation energy and viscosity for the given dependence. In this way, 

during the extension of the polymer network of the rubbers with a constant strain-rate 

iA ib i

ε&  

according to the increase of deformation, there takes place an accelerant growth of viscosity and 

stress in accord with Newton’s law of flow: σ ηε= &  , where the coefficient of viscosity η   is 

determined by eq. (6).  

However for the initial section of the stress-strain curves of rubbers, after a small section of 

Hookian elastic strain, the rate of stress growth decreases with the increase of strain to certain 

limits, after which there begins an increase in the rate of stress growth (see Figs. 3 and 4).  It is 

possible to presume that in the first section inelastic deformation comes about with the jumps of 

molecular-kinetic units into the vacancies owing to the transfer of external stress through elastic 

intermolecular and interatomic bonds of the macromolecules,  with  the destruction of old 

intermolecular bonds and the generation of new bonds after the jumps of kinetic units. This 

process is similar to the process of inelastic deformation of non-polymeric solid bodies. This 

process can be described by the mechanism of flow with a decrease of activation energy 

according to Eyring and according to equation. (1). But, for polymer networks, deforming in 

accordance with the model SLS, the force resulting in flow is the difference between stress and 

the force of entropic elasticity ( )Eσ ε− , connected with the elastic element (spring ) with the 

modulus H  , which reflects the action of elastic forces on the flow in the dashpot. It is probable 

that, with small deformations, there takes place not so much strain of the total polymer network 

for the whole specimen, as a break-down of the amorphous globular structure of the aggregates 

united by intermolecular bonds. In this process, the jumping of the molecular–kinetic units is 

facilitated by elastic forces, conveyed through the total bonds of the aggregates of primary 

structure of the polymer.  Thus, the failure of a part of such bonds and jumping of kinetic 

elements into vacancies in the direction of the applied force is facilitated at the expense of this 
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force. That leads to a reduction of the energy barrier to movement in the force direction by a 

quantity proportional to the force  ( Eσ ε−  , in conformity with the SLS model. Then the 

viscosity of flow during strain of the rubber can be described by the equation (7) derived from 

the position of Eyring’s theory, analogous to the inference of equation (6): 

  

0 ( )( ) exp( )d
d

B

E b EA E
k T
σ εη σ ε − −

= −              (7) 

 

Here the index   with the coefficients   and  shows that the given 

dependence describes the processes of deformation with a reduction of viscosity and of 

activation energy. This  view  of  the dependence of viscosity on stress for the SLS model is 

connected  with the fact that  the reduction of activation energy is basically assumed, as 

mentioned  above , due to of the action of elastic bonds on the break-down and subsequent  

restoration of intermolecular bonds with flow in the process of jumps of the kinetic units into 

vacancies. With this, it is possible to disregard deceleration of the jump kinetic units by the force 

of entropic elasticity of unwrapped chains in comparison to the action of an external force on the 

reduction of the potential barrier for this jumping, at least up to the moment when the 

accelerating growth of stress begins on the stress-strain curves of rubber. 

d (decrement) dA db

After that moment the growth of resistance to the strain of the chain between crosslinks brings 

about the growth of the activation energy of flow in accordance with equation (6) and, by the 

same token, to an exponential increase in viscosity. This becomes apparent in the acceleration of 

the increase in stress at a constant strain-rate in the second section of the extension curve of an 

elastomer. 

It is well known that the viscosity η  and the relaxation time rτ , when considering the mechanical 

behavior of materials using Maxwell’s and Voight-Kelvin models together, are related by [11] : 

 

        r H
ητ =                (8) 

 

where H  - is the elasticity modulus. Then, for the process of inelastic deformation with 

decreasing rate of stress increase according to the equation (7), it is possible to state: 

 

0 (( ) exp( )d
r d

B

E b EC E
k T

)σ ετ σ ε − −
= −    (9) 



 

Here the pre-exponential factor   is equal to  dC dA
H

 . 

For the second section of inelastic deformation, with accelerating rate of stress increase, the 

relaxation time in accordance with the equation (10) grows exponentially with stress increase: 

 

          0 ( )( ) exp( )r i
B

E EC E
k T
σ ετ σ ε + −

= −                        (10) 

 

  

where  i
i

AC
H

=  .  From this it follows that the relaxation time in phenomenological models, 

describing the deformation of polymers using elements of Maxwell and Voight-Kelvin are not 

constant but a variable parameter, depending on stress and reversible rubber-like deformation, 

i.e., on the fundamental peculiarity of a polymer body - of entropic character of deformation of 

chain macromolecules.  

In view of the deduced mechanisms it is possible to quantitatively describe the stress-strain curve 

of a rubber using basic models of viscoelastic behavior.  For a polymer network with reversible 

rubber-like deformation we use the three-element model of a standard linear solid (SLS), 

illustrated in Fig. 1. It is possible to state the connection between the two elastic and the viscous 

elements in this model in the form of the differential equation[11]:      

 

                     ( )r rH E Eτ ε ε τ σ σ+ + = +& &                (11) 

 

or in the form of the differential equation: 

 

                ( )H E HE Hη ε ε ησ σ+ + = +& &                                         (12) 

 

where ε&  is the strain-rate, σ&  - the rate of the stress change in the time of deformation.  

From equation (12) we obtain the coefficient of viscosity in the SLS model: 

 

  (
( )
H E
H E

)σ εη
ε σ

−
=

+ −& &
     (13) 
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For a description of the deformation process of a networked polymer with the help of equation 

(13) we use equations (6) and (7).  For the section with an increasing rate of stress growth, we 

use equation (6). Equating of the equations on the right of equations (6) and (13), we obtain: 

 

    0 (( ) ( ) exp( )
( )

i
i

B

E b EH E A E
H E k T

)σ εσ ε σ ε
ε σ

+ −−
= −

+ −& &
   (14) 

 

Here it means that the coefficient of viscosity η  reflects the mechanism of flow in relation to the 

molecular model shown in Fig. 2 and is referring to the whole material sample that can be 

stretched. Taking into account that  i
i

AC
H

=  , from equation (14), after the cancellation 

shortening of the factor ( )H Eσ ε− , we obtain equation: 

 

    0 ( )1 exp( )
( )

i
i

B

E b EC
H E k T

σ ε
ε σ

+ −
=

+ −& &
                   (15) 

 

Logarithmically equation (15) can be expressed as follows:  

 

          01ln (ln ) ( )
( )

i
i

B B

E bC
H E k T k T

Eσ ε
ε σ

= + + −
+ −& &

  (16) 

 

If the experimental data on the deformation of polymers show an observance of a linear 

dependence   to  where: y x

           1ln
( )

y
H E ε σ

=
+ −& &

    and    x Eσ ε= −                (17) 

 

then this will justify considering as correct the proposed molecular model of strain of the 

macromolecular network (Fig. 2) with an increase in activation energy of  viscous flow 

according to the growth of stress and forces of entropic elasticity. The combination of this model 

with standard models of viscoelasticity allows us to describe quantitatively the stress-strain curve 

of a rubber and to give their extrapolative prognosis. 

Analogous calculations can be carried out for the first section of the inelastic deformation of 

rubbers, when the rate of stress increase decreased with strain. Equating the right-hand parts of 

equations (7) and (13) we obtain, as a result, the following equation: 
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0 ( )1 exp( )
( )

d
d

B

E b EC
H E k T

σ ε
ε σ

− −
=

+ −& &
             (18) 

 

After taking the logarithm of this equation we obtain:  

 

   01ln (ln ) ( )
( )

d
d

B B

E bC
H E k T k T

Eσ ε
ε σ

= + − −
+ −& &

             (19) 

 

From the angle of slope of linear relationships (16) and (19) it is possible to calculate the 

quantities as coefficients with the argument (b )Eσ ε−  . These coefficients determine the 

dimensions of the volume of material b  , in all probability depending on the number and 

structure of the molecular-kinetic units participating in the process of flow and change of chain 

conformation. That is to say, they are volume-kinetic parameters reflecting both the dimensions 

and the structure of kinetic units of the macromolecules taking part in the relaxing process and 

the given conditions of loading (form and rate of deformation) for the mechanical test that is 

being carried out. 

The section  0(ln )i
B

EC
k T

+  , cut off by the linear relationship (16) on the axis of the ordinate, 

enables us to calculate the quantity   , if the quantity   is known. It is possible to determine 

the quantities  if a series of experiments on deformation are carried out at different 

temperatures.  In a series of cases it is possible, proceeding from the chemical and physical 

structure of the polymer, to make an assumption about the quantities   , determined by 

different methods. For example, it is known that the potential barrier for the change of chain 

conformation is determined by the inhibition of internal rotation of the monomeric units of the 

polymer around the C-C bonds and can be about 13.8 kJ/mol (3. 3 kcal/mol)

iC 0E

0E

0E

[12] .  

The energy of intermolecular interaction for organic polymers can be about 4. 18 – 29. 27 kJ/mol 

(1 - 7 kcal/mol). Taking as a first approximation =20. 93 kJ/mol (5 kcal/mol), it is possible to 

calculate the quantities C  from equations (16) and (19). 

0E
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Comparison with Experimental Results 

 

To check the validity of the proposed dependence as indicated in equations (6), (7), (16) and 

(19), experiments were carried out to compare them with the predictions.  

A specimen of rubber was stretched on a “Frank” testing machine at a rate of 200 mm/min, at a 

temperature of 230C. The calculation of the extension curves was carried out to determine the 

relationship of true stress  σ  with the relative deformation ε  with regard to the decrease in area 

of the cross-section of the specimen in accordance with its stretching with a Poisson coefficient 

equal to 0.5. 

In Fig. 3 we give the extension curves of the rubber specimen for both true stresses and for 

comparison, for nominal or conventional stress, calculated on the basis of the initial cross-section 

of the specimen, while being stretched at a rate of 0. 1667 s-1. 

0

5

10

15

20

25

30

35

0 2 4 6 8 10

Strain 

St
re

ss
   

   
   

   
  ,

   
M

Pa

 
Figure 3. The dependence of true stress (squares) and nominal stress (triangles) during the 

elongation of rubber with stretching of the specimen at a rate of  0. 1667 s-1

Shown in Fig. 4 is a plot of the stress - strain curve of rubber, with nominal stress, on an enlarged 

scale to show more clearly the two sections of the extension curve.  
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Figure 4. The dependence of nominal stress during the elongation of rubber with stretching of 

the specimen at a rate of 0. 1667 s-1   

 

The extension curves shown in Figs. 3 and 4 are characteristic for rubbers and can be explained 

in such a way as was already assumed above; in the first stage of rubber stretching, after a small 

section of the Hookian elastic deformation, there begins the processes of inelastic tension 

according to the mechanism of Eyring with a non-linear reduction of viscosity in conformity 

with equation (7). In the second stage there is an increase in the contribution of tension of the 

macromolecular network; this resistance to flow is connected with the increase of the force of 

entropic elasticity of the chain between crosslinks. This brings about an increase in the rate of 

stress growth with further strain. 

Therefore it is necessary to describe the stress-strain curves of rubbers in terms of the two 

equations: in the first section of the stress-strain curve with lowering rate of stress increase – 

equation (19), and in the second section of the stress-strain curve with increasing rate of stress 

growth – equation (16). Both equations are based on the SLS model using the proposed 

dependence of viscosity on stress in terms of equations (6) and (7). 

Figure 5 shows the dependence of  y  on  for rubber, calculated in accordance with equation 

(17). When constructing this plot we used the values of relative deformation 

x

ε  , and stress  σ  , 

and also the rate of strain ε&   and the rate of increase of stress σ&  , obtained from the 

experimental data of the “true stress-stain curve” of rubber. The values of elasticity modulus H , 

and rubber-like elasticity modulus E  ,  were taken based on theoretical estimations shown in  

ref. [12] ; i.e. H  = 2000 MPa, E  = 0.5 MPa. 
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Figure 5. Plot of   against   as given in equation (17) y x

 

In accordance with the graph in Fig. 5, the two stages of inelastic deformation are reflected with 

negative and positive slopes of the dependence of the left parts of the equations (19) and (16)  on 

the stress ( )Eσ ε−  on the dashpot in the SLS model. 

The linearization of the two parts of the stress-strain curve of rubber with a negative and positive 

slope of the logarithmic dependence shown above for the proposed model of deformation of a 

polymer network gives grounds for the confirmation of the assumptions above regarding the 

mechanism of rubber deformation.  

In Fig. 6 is shown the relation of   against    according to equation (17) for the first section of 

the stress-strain curve of rubber, where processes of flow of the molecular-kinetic units are 

predominant, there being a decrease of the activation energy at rather small sizes of reversible 

deformation which are not exceeding 100-200 %. It is reflected in the negative slope for the 

linear dependence of equation (19).  For the first five points, taking into account the difficulties 

of graphic differentiation on the initial section of the stress-strain curve of rubber, the coefficient 

of correlation of a linear relationship equal to  0.9851 can be considered as a satisfactory 

confirmation of the relations in equation (19) having a minus sign  for the argument ( )

y x

Eσ ε− .    
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Figure 6. Plot of y  against    as given in equation (19) for the initial section of the stress – 

strain curve of rubber 

x

 

Shown in Fig. 7 is the plot of  y  against    for the second, basic section of the stress-strain 

curve of rubber (based on equation (16)) for which there is a large reversible deformation. In this 

section, where the changes in conformations of the stretched chains are large, there is a 

predominance of the process of growth of the entropic resistance to the deformation of the 

specimen with an increase in activation energy. This is reflected in the positive slope for the 

linear dependence of equation (16). The coefficient of correlation of linear dependence for the 

graph in Fig. 7 is equal to 0.9944 which is indicative of a good implementation of the 

dependence given in equations (16) and (6)  

x
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Figure 7.  Plot of   against   as given in equation (16) for the second section of the stress-

strain curve of rubber 
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From the inclination angles of the linear relationship corresponding to equations (16) and (19) 

and the sections cut by them on the ordinates axis, it is possible to find the values of the 

coefficients   and   , and the quantities  ib db 0(ln )i
B

EC
k T

+    and  0(ln )d
B

EC
k T

+  . 

For the initial section of the stress-strain curve of rubber, in accord with equation (19), the 

quantity  d

B

b
k T

  is -0.0009 MPa-1, and the volume coefficient  cm243.68 10db −= ⋅ 3. The quantity 

0(ln )d
B

EC
k T

+  for the first section of the stress–strain curve of rubber is equal to -5.8087. 

Assuming that 0E ≅ 20.93 kJ/mol (5 kcal/mol), which is characteristic for the activation energy 

of intermolecular interaction, then the value s/MPa and 

s.  

76.137 10dC −= ⋅

31.227 10D dA C H −= = ⋅

For the second, major section of the stress-strain curve of rubber, the value of the volume 

coefficient is =0.6 ⋅10ib -24 cm3. Lower values of the volume coefficient for equation (16) can 

signify the participation of a larger number of kinetic units in the process of deformation of the 

specimen in the major process of its tensile deformation. 
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For the same second section of the stress-strain curve of rubber where, with the growth of 

deformation, the stress increases exponentially, the value  0(ln )i
B

EC
k T

+  is -5.8096, 

=6.132 ⋅10iC -7s/MPa and 1.226i iA C H= = ⋅10-3s. 

For a comparison it is possible to refer to the values of relaxation time rτ  and viscosity  η  with 

deformations and stresses at the beginning and at the end of the stress-strain curve of rubber 

shown in Fig. 3.   For a strain of 0.187 and stress 0.242 MPa, the relaxations time  

rτ = 2.22 ⋅10-4 s and the viscosity is η = 4.439 ⋅102 Pa ⋅ s. For a strain of 7.666 and stress 29.671 

MPa, the value of the relaxation time is rτ = 3.88 ⋅10-2 s and the value of viscosity is 

η = 776.8 ⋅102 Pa ⋅ s.  These figures illustrate that, with given set values of activation energy  , 

elasticity modulus 

0E

H  and rubber-like elasticity modulus E , the viscosity of the rubber at the 

beginning of the process of deformation is small. This is evidence of weak forces of 

intermolecular interaction. With deformations near to the breaking-point and stresses about 30 

MPa, the viscosity grows under tension by two or three orders of magnitude.   

  

Conclusions  

 

Although the model and the mechanism of deformation presented in this article were considered 

for rubbers, i.e. for polymers in a rubber-like state in the absence of residual deformation, there 

is no reason to suppose that conformity to the natural laws that were found is not applicable to all 

polymers. But here it is necessary to bear in mind that the calculation according to equations (6), 

(7), (16) and (19) are correct provided that during the course of the experiment the specimen is 

deformed uniformly without necking or the destruction of the specimen. If necking occurs it is 

necessary to find means of determining the cross section and the true stress of the specimen.  In 

addition, an appraisal of possible irreversibility of material flow is necessary. For specimens of 

polymers of different sizes and form, with different preparations when molded and with different 

chemical and super-molecular structure, there is a large variety of mechanical behavior possible.  

For example, the appearance at the beginning of deformation of a narrow neck which then 

spreads over the whole specimen, reaching large degrees of elongation[13] . This condition will 

call for further elaboration of the model, for example examination of the local areas of flow of 

the material under the action of tangent shear stresses. 

Features of the structure connected with different levels of crystallinity, with different density of 

crosslinks for networks polymers, with temperatures ensuring glass-forming, rubber-like or 
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viscous-flow condition of the thermoplastics – all these leave their mark on the deformational 

behavior of the polymers during the various forms of testing. With strong intermolecular 

interaction of the chains or for high degrees of crosslinking intense destruction of the covalent 

bonds is possible with great stresses. All this, including rate and time of deformation, can be 

reflected both in coefficients  and   and in the pre-exponential factors in equations (6), (7), 

(16), and (19).  This is necessary to be taken into consideration for the quantities appraisal of 

deformation curves and in the methods of prediction of mechanical properties of polymeric 

materials. Taking into account the above arguments the deformation mechanism proposed in this 

work appears to be common for all polymers in the presence of large reversible deformations. It 

is based on the entropy elasticity of a macromolecular network which causes an increase of the 

material’s flow resistance in the course of deformation. The latter increases the activation energy 

of jumping of molecular-kinetic units of macromolecules in vacancies.  

db ib
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